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j RESIDUAL THERMAL STRESSES IN
GRAPHITE/PEEK (APC-2) LAMINATES

I
i By

I Y. Jack Weitsman and K. Lee
The University of Tennessee at Knoxville

i Abstract

Thermoplastic resin composites undergo a substantial temperature drop during
their post-manufacturing cool-down and sustain substantial residual stresses due
to mutual geometric constraints among the multi-directional plies. In view of
the time-dependent thermomechanical response of the resin the residual stresses
exhibit strong dependence on cool-down history. This paper demonstrates that it
is possible to obtain an optimal cool-down path which minimizes the residual

i thermal stresses in APC-2 composites.
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1. INTRODUCTION

I APC-2 (graphite/PEEK) composites exhibit substantial time-dependent stress-
strain response, especially at high temperatures, and a very large disparity be-
tween the longitudinal and transverse coefficients of thermal expansion. In ad-

dition, the processing of APC-2 involves cool-down from TM = 400'C to TR = 20'C
- which is about twice the temperature excursion sustained by graphite/ epoxy
composites. The above factors produce significant residual thermal stresses in
multi-directionally reinforced laminates, which exceed the range of linear behav-
ior. In view of the time-dependent response of PEEK, these stresses are sensitive

I to temperature history.

It seems that the most complete characterization to date of the time-dependent
response of PEEK and unidirectionally reinforced APC-2 coupons was obtained
by Xiao [1], and typical creep data at various levels of temperature are shown in
Figure 1. These, and supplementary experimental results not shown here, en-
abled Xiao to represent the time dependent response of PEEK and APC-2 by
means of the non-linear viscoelastic model of Schapery [2]. However, it is im-
portant to note that the creep data in ref. [1] were collected under isothermal con-

I ditions and are limited to the temperature range of 2 0 C<T<2 0 C. It was shown
in ref. [3] that the implementation of Schapery's model requires additional creep
data under transient temperature conditions. Consequently, Xiao's characteriza-
tion contains an uncertain component. The time-dependent response of APC-2
laminates can be predicted from the behavior of a single ply by means of classical
laminate theory [4] upon the utilization of Schapery's model and employment of
the quasi-elastic viscoelastic approximation [5].

When linearly viscoelastic materials undergo a prescribed, geometrically con-
strained temperature drop over a finite, predetermined, time interval it is possi-
ble to find an optimal cool-down path Tf2(t) which results in minimal residual
stresses. Such paths were found for thermorheologically simple [61 - [8] and
thermorheologically complex [9] viscoelastic responses. However, the foregoing
analyses do not apply to APC-2 composites because of the substantial non-linear-
ity which occurs during their cool-down. Consequently, the extension of the op-
timization scheme to account for non-linear behavior is the subject of the
present work.

2. ANALYSIS

2.1 Basic Equations

The linear thermo-elastic response of a uni-directionally reinforced ply undergo-
ing a temperature excursion AT = T - T, from some stress-free reference tempera-

ture T, (say), is given by [4]
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CL - CLA T = L/E L -VTL FT/E T , ET -(XTAT=-VLT OL/EL+Yt/ET (1)

where standard symbols were used and subscripts L and T denote longitudinal
and transverse directions, respectively. In the particular case of a symmetric bal-
anced cross-ply lay-up a straight forward employment of laminate theory yields
the following expression for the laminate-level residual thermal stresses

O L = = - :

w a r ET aAT (2)
where

I0+ VTL)( + 1+ VLT ET and a=Tc- L (3)r 1 + VTL L

Note that the form of equation (2) remains valid for other symmetric lay-ups (in
particular, quasi-isotropic lay-ups), but with different expressions for r. In the
case of APC-2, the most pronounced time dependence occurs in the transverse
modulus ET. However, since ET/EL << 1, we may ignore the time dependence of
r and let r = 0.9125 to within ± 2%. In the isothermal case with the stress free

temperature denoted by T1, where T = constant and AT = T, - T, employment of

Schapery's non-linear viscoelastic model modifies equation (2) to read as follows
[21:

o(t- r cXV 2(T) t {t) - (r)) [d(VI(T)AT) /dzd -r (4)

where the product V(T) = V1(T)V 2(T) is the vertical shift required to coalesce iso-

thermal data (say creep) to form a "master curve."" In addition, the "reduced

times", M(t) and (O) in equation (4) are given by

(u) = ju dp/a(T; a(p)) (5)

In equation (5) a(T;o) is the horizontal shift factor required to coalesce isothermal
data (say creep) to form a "master curve." Though both "V" and "a" may, in

principle, depend on o - it appears that the non-linearity of the response can be

expressed through a(T;a) alone. Under fluctuating temperatures, with T = T(t), it

is necessary to re-write equation (4) with V2(T(t)) and VI(T(r)). In this case we

also have AT = AT(r) in equation (4) and a = a(Tp);a(p)) in equation (5).

It is obvious from equation (4) that for T = constant a(t) depends only on V(T) and not on V1 T) and

V2 (T) separately. This no longer holds for fluctuating temperatures.
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2.2 Reduction of APC-2 Response Data

The isothermal creep data shown in Figure 1 were reduced by Xiao [1] to expres-
sions which fit Schapery's model. However, the present analysis requires values
which involve the relaxation modulus E(t), rather than creep compliance D(t).
E(t) was obtained from creep-response functions by the well known relation [5]:
Et) = 1 sin (itpt)) where p(t) = d log D(t)

L~t) n~t) d log t

Values of E(T) vs. log t are plotted in Figure 2. The vertical shift factors V, (T) and

V2 (T) for relaxation are taken to be V, = h 1 and V2 = hi 1 where h1 , h 2 are vertical
shift factors for creep. Since ref. [1] provides only the product h(T) = hl(T)h2 (T),

we take V(T) = h(T)-1. The horizontal shift factor a(T;cT) was approximated by the
following expression: a(T;a) = aT(T)a o(o) where a(a) = exp [-- (T-)]J for c > t and

aoc) = I for c5,c. a-r(T) was determined from a set of values 01= 3.3,

log aT,= 6.0; 02 = 2.69, log aT2 = 2.5; 03 = 2.1, log aT3 = -8 and 04 = 1.6 log aT, = -10 w i t h

0, = 1000/(273.1 + Ti 'C). Intermediate values were obtained by linear interpola-

tion. The parameter (x = a(T) was obtained by a spline functio: fit of & (24.41) =
0.118, a (44.26) = 0.118, i (74.41) = 0.118, 0x (91.32) = 0.146, 0x (103.1) = 0.171 and X
(120) = 0.239. t(T) was obtained by a spline function fit of it (20) = 31.42, t (26) =
31.3, ,t (38) = 31.03,t (50) = 30.8,,t (86.2) = 30,t (108) = 22.16,,t (114) = 20, and t (120) =
17.86. The vertical shift V(T) corresponded to log V(40) = 0.025, log V(129.4) =
-0.0031, and log V(200) = -0.21 with linear interpolation for intermediate values.

Finally, the coefficients of thermal expansion were taken to be 0XL =

0.5 x 10"6/1'C, (xT = 30 x 10-6/1'C for T < 125°C and aL = 10"6/1'C, 0cT = 75 x 10"6/10C,
for 125°C < T < 300'C. To avoid computational difficulties at T = 125°C we as-

sumed smooth transitions in values of cXL and cXT to occur over 124 0 C<T<126'C.

2.3 Optimal Cool-Down in the Linear Case

The optimization of cool-down can be stated as follows: Given an initial tem-
perature T1, where the composite is stress-free, a final temperature TF (TF < TI ), a
finite time interval tf, and a thermoviscoelastic stress-strain relation (e.g. equa-
tion (4)), find the "best" time-temperature history T = TQ(t), which minimizes

the residual thermal stresses a(tf). In all previous studies [6]-[9], which concerned
linear behavior, namely a = a(T) in equation (5), it was found that TW(t) under-
goes sharp drops at t = o, from T, to T. and at tf, from Tn(tf) to TF,
and it varies monotonically and smoothly over the range o < t < tf. Specifically

for the linear case expressed in equation (4) (namely a = a(T) * a(T;G)) the initial
drop is given by

* 4



To - T1= V(T 0 (T0 ) (6)
I a'(T)V 1(TO) - Vl'(To)a(To)

which is a transcendental equation in the unknown To . Beyond the initial drop,
the optimal path Tn(t) is governed by the integro-differential equation

d T(t) E'(t,tf) a' [V ' (T - TI) + V1]Sdt - E'(t,tf) a (a [V1' (T -TI) + Vii- a'[Vl' (T -TI) + Vl

I I~tf aTs)

In equation (7), E(tt)f= a(T)) and primes denote derivatives with respect

to the argument. Note that equation (7) must be solved "backwards" from t = tf,
towards t = o since E(t,tf) cannot be evaluated without a-priori knowledge of the
solution, with the exception of E(tf,tf) = E(o) - which is known. The procedure is

to guess To (t i), solve equation (7) numerically and evaluate T(o), then adjust the

guess value of Tdtf) iteratively until we obtain T(o) = T o which matches the root
of equation (6).

1 2.4 Non-Linear Optimal Cool-Down

(a) The Three Element Model as a Prototype Case.

Consider first the linear viscoelastic case with E (t) = Co + D. exp (46'),

a(T) = exp (-T/A+B) and V1 = V2 = 1. Straightforward manipulations yield [61:

T0 = T1 - A, T,(t) = A1B - n(t)] (8)

where 0 (t) = t/A + exp C, and C = B+1 - TI/A. The residual thermal stresses dur-
ing optimal cool-down are given by

(1-v)a(t)/ox = A{Co ln 6(t) + T, /A-B] +Do} (9a)
1 or o0t) =-k T(t) + k T! + m A (9b)

where k = cE(o)/(1-v), m = caE(o)/(l-v). Introduce non-linearity by considering

a = a(T,o) = exp (-T/A + B-1 c) 13>o (10)

* 5
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I The optimal cooling-path can be obtained by iteration, using the linear results (8)

and (9) as initial guesses which are denoted by A(O), B(o), TIU(O), 0(o). Namely, in-
sert the linear result (9) into equation (10). After straightforward manipulations
we obtain

I a = (Tc) = exp (-T/A(1)+B(I)) (11)

where A(')=A(o)/(1l-kA(O)) B(1)=B(O)[1-p(kTI+mAO))/B(o) w i t h A(O)=A,

B(°) = B. The primary significance of expression (11) is that it no longer con-

tains the stress a explicitly, hence we can write a(T,o) = a(1 T), and aO1 (T) is of the

same form as a(T). Consequently, T (1) (t) and a(1) (T) will retain the same forms
as (8) and (9), but with A(') and B(1) replacing A and B. At this stage, we substitute

(1O(t) into equation (10) and obtain a revised a(T,G) which, as can be readily seen,

is of the form a(2)(T) = exp (-T(1)/A(2)+B(2)) where A(2) =A(1) and B(2)= B(°)

il-P(kTj + mA (1)) /B(°) i. An additional substitution yields A (3) = A (2) and B(3) = B(2)

indicating convergence after three iterations. The optimal path for the three el-
ement model with viscoelastic non-linearity introduced through expression (10)
is

Th(t) = A LB - In (t)l , To) = T, - A (12)

I where ,=A/(1-PkA), B=B[1-P(kTi+mA)/B" , and =t0,+ exp (1
The analytic solution (12) and the iteration scheme serve as a model and a3 verification check for the numerical scheme which follows.

(b) Optimal Cool-Down of [0/90]s APC-2 Composites.
The optimal temperature path was obtained numerically, by means of a special-
purpose, custom-made computational sub-routine. The procedure wa-S

follows:

Step 1: Consider linear viscoelastic behavior, with response functions E(t),c0,a(T)
and V(T) determined from reduced experimental data and with prescribed T1 , TF

and tf. Employ equation (6) to determine To= T(o ) and solve (7) numerically to

obtain TQ(t) , where T(tO)is chosen iteratively until a solution of (7) yields

Tn(o )=T. Denote TO(t)byT't).

3Step 2: Compute the residual thermal stress o(t), denoted by a~ot), due to cool-

down along Tt).

3 6
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Step 3: Relate o('Xt) to TkXt) to form Y°})=F(O°T(°))

i Step 4: Consider the non-linear shift factor function a(T;ay) which corre-sponds to
the reduced data for APC-2. Along the linear optimal path this function is

a(T(o); F(T(o))) which can be expressed as a(1XT).

3 Step 5: Repeat steps 1, 2, 3, and 4 with a(T) replaced by a(XT) to obtain T(o1) with

TOt), o;'It), S1)=FkT(1)) and aP2 T) respectively.

3 Continue until the attainment of a prescribed convergence, say

T(+l (t) = T 'kt) + Ot) , I t)I < a given tolerance. Note the following observa-
3 tions:

1. The solution of equation (7) is, in general, unstable numerically. The optimal
I path undergoes rapid drops over short time-intervals, yielding vast variations in

a(T). Consequently, it is necessary to employ non-uniform time intervals when
integrating equation (7).

2. The numerical correlation a = F(T) and its incorporation into a(T;G) -4

a(T;F(T)) -. 51T), as indicated in steps 3 and 4 above, require smoothing opera-

tions to provide reliable values for the derivatives of a"(T) to be used in equation
1(7).

3. We have no mathematically grounded proof that the iterated optimization
scheme must converge, and obviously no proof of uniqueness. For the APC-2
data at hand, convergence was attained after about 4-5 iterations. The validity of
our results was verified at least partially by introducing several arbitrary, small

disturbances in the optimal path and comparing Otf). In all cases the resulting

values of a~tf) exceeded the optimal value.

3. RESULTS AND CONCLUDING REMARKS

Results for optimal cool-down paths, TO(t) vs. t, are shown in figures 3 and 4 for

a cooling time tf= 100 min with initial, stress-free, temperatures T, = 250'C and

300'C , respectively, and TF = 30'C. These figures contain results for the three

thermorheological sub-cases: the "simple" case (V = V1 = V2 = 1) and two
"complex" cases (V = V1, V2 = 1 and V = V2, V1 = 1), as well as three analogous

non-linear cases with a = a(T;o). Figures 5 and 6 exhibit residual stress build-ups

7
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i during optimal cool-downs which correspond to the six sub-cases shown in
Figures 3 and 4.

I Figures 3-6 demonstrate the important role played by the various material func-
tions which relate the thermoviscoelastic behavior of APC-2. Variations among3 those functions, as well as uncertainties concerning the stress free temperature
lead to predictions of residual thermal stress which vary between 9.1 and 13.15
ksi, the ultimate transverse stress at room temperature being about 11.5 ksi. It is
therefore desirable to extend the experimental characterization work of Xiao [1] to
include a higher range of temperatures as well as transient temperature response
to distinguish between the functions V, (T) and V2 (T).
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